Neutron diffraction

Rob McQueeney

	NEUTRONS		ELECTRONS	
Wavelength range	0.4 - 10 Å	0.1 - 5 Å	0 .04 - 0.2 Å	
Energy range	0.001 - 0.5 eV	3000 - 100000 eV	6000 - 120000 eV	
Cross-section	10 ⁻²⁵ barns	barns 10 ⁻²⁵ Z ² barns ~10 ⁻²² bar		
Penetration depth	on depth ~ cm ~ μm		~ nm	
Typical flux	10 ¹¹ s ⁻¹ m ⁻²	10 ²⁴ s ⁻¹ m ⁻²	10 ²⁶ s ⁻¹ m ⁻²	
Beam size	mm-cm	μ m-mm	nm-μm	
Typical sample	Any bulk sample	Small crystals, powders, surfaces	Surfaces, thin films, grains, gases	
Techniques	Diffraction Inelastic scattering Reflectivity	Diffraction Photon absorption Photoemission Inelastic scattering	Microscopy Diffraction Emission spectroscopy EELS	
Phenomena	Magnetic/crystal structures collective excitations (phonons, spin waves) electronic excitations (crystal- field, spin-orbit)	Crystal structures, electronic transitions (photoemission, absorption),	microstructure crystal structures electronic transitions	

Neutron cross-section

Nuclear property

- Random with Z
- Depends on isotope
- Depends on nuclear spin
- Absorption can be problem

		Abundance	Cross-	Absorption
		(%)	section (bn)	(bn)
	Gd		180	49700
	152Gd	0.2	13	735
	154Gd	2.1	13	85
	155Gd	14.8	66	61100
	156Gd	20.6	5	1.5
	157Gd	15.7	1044	259000
	158Gd	24.8	10	2.2
Phy	160Gd	21.8	10.52	0.77
	·	-	· ·	

Why neutrons??

- Penetration ~ centimeters, bulk probe
- Sensitivity to low-Z
- Isotopic contrast
- Wavelength range ~ interatomic spacing (1-2 Å) → diffraction
 - interacts with nuclei
 - Interacts with magnetic moment of unpaired e-
- Can measure crystal and magnetic structures

Producing neutrons

FissionNuclear reactor

Moderators →Cold-Thermal

SpallationParticle accelerator

Moderators →Cold-Epithermal

Physics 590 6

Neutrons by reactor fission

High flux isotope reactor - ORNL

Physics 590

High Flux Isotope Reactor at Oak Ridge National Laboratory

ORY

The United States' highest flux reactor-based source of neutrons for condensed matter research

07-G00244E/arm

Under consideration

Neutrons by pulsed spallation

Spallation Neutron Source (ORNL)

Target-moderator system

SNS liquid Hg target

Fig. 3. Horizontal cross-section of the flux-trap moderators.

Spallation Neutron Source at Oak Ridge National Laboratory

The world's most intense pulsed, accelerator-based neutron source

Backscattering Spectrometer (BASIS) . BL-2

Dynamics of macromolecules, constrained molecular systems, polymers, biology chemistry, materials science

Spallation Neutrons and Pressure

Diffractometer (SNAP) • BL-3

Materials science, geology, earth and

environmental sciences

Chris Tulk + 865.576.7028 + tulkca@ornl.go

Eugene Mamontov · 865.574-5109 · mamontove@ornl.gov

Nanoscale-Ordered Materials Diffractometer (NOMAD) • BL-1B (2010)

Liquids, solutions, glasses, polymers, nanocrystalline and partially ordered complex materials

Joerg Neuefeind • 865.241.1635 • neuefeindic@ornl.gov

Wide Angular-Range Chopper Spectrometer (ARCS) • BL - 18

Atomic-level dynamics in materials science, chemistry, condensed matter sciences

Doug Abernathy · 865.576.5105 · abernathydl@ornl.gov

Fine-Resolution Fermi Chopper Spectrometer (SEQUOIA) • BL - 17 (2008)

Dynamics of complex fluids, quantum fluids, magnetism, condensed matter, materials science

Garrett Granroth • 865.576.0900 • granrothge@ornl.gov

Ultra-Small-Angle Neutron Scattering Instrument (TOF-USANS) • BL-1A (2012*

Life sciences, polymers, materials science. earth and environmental sciences Michael Agamalian · 865.576.0903 ·

Chemical Spectrometer (VISION) • BL-16B (2011)

Vibrational dynamics in molecular systems, chemistry Christoph Wildgruber • 865.574.5378 • wildgrubercu@ornl.gov

BL - 16A

Neutron Spin Echo Spectrometer (NSE) • BL - 15 (2009)

High-resolution dynamics of slow processes, polymers, biological macromolecules Michael Ohl • 865.574.8426 • ohlme@ornl.gov

Hybrid Spectrometer (HYSPEC) • BL-14B (2011)

Atomic-level dynamics in single crystals, magnetism, condensed matter sciences

Mark Hagen • 865.241.9782 •

BL-14A

Magnetism Reflectometer • BL-4A

Chemistry, magnetism of layered systems and interfaces Valeria Lauter • 865.576.5389 • lauterv@ornl.gov

Liquids Reflectometer • BL-4B

Interfaces in complex fluids, polymers, chemistry John Ankner • 865.576.5122 • anknerjf@ornl.gov

Cold Neutron Chopper Spectrometer (CNCS) • BL - 5

Condensed matter physics, materials science, chemistry, biology, environmental science

Georg Ehlers • 865.576.3511 • ehlersg@ornl.gov

Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) • BL-6 (2008)

Life science, polymer and colloidal systems, materials science. earth and environmental sciences

Jinkui Zhao · 864.574.0411 · zhaoj@ornl.gov

Elastic Diffuse Scattering Spectrometer (CORELLI) . BL-9 (2013)

> Detailed studies of disorder in crystalline materials Feng Ye • 865.576.0931 • yef1@ornl.gov

BL-10

Macromolecular Neutron Diffractometer (MaNDi) • BL-11B (2012)

Atomic-level structures of membrane proteins, drug complexes, DNA

Leighton Coates

Fundamental Neutron Physics Beam Line • BL-13 (2008)

Fundamental properties of neutrons

Geoffrey Greene • 865.574.8435 • greenegl@ornl.gov

Single-Crystal Diffractometer [TOPAZ] • BL-12 (2009)

Atomic-level structures in chemistry, biology, earth science, materials science, condensed matter physics

> Christina Hoffmann - 865.576.5127 hoffmanncm@ornl.gov

Powder Diffractometer (POWGEN) . BL-11A (2008)

Atomic-level structures in magnetism, chemistry, materials sciences Jason Hodges • 865.576.7034 • hodgesj@ornl.gov

* Scheduled commissioning date

Engineering Materials Diffractometer (VULCAN) • BL-7 (2008)

BL-8A

BL-8B

Mechanical behaviors, materials science, materials processing

Xun-Li Wang • 865.574.9164 • wangxl@ornl.gov

Places to go

Powder diffraction

For single-crystal: $Q_{hkl} = k_f - k_i$

For powder: $Q_{hkl} = 2k_i \sin\theta$

$$k_i = 2\pi/\lambda$$

Incident beam x-rays or neutrons

Bragg's Law $\lambda = 2d\sin\Theta$ Powder pattern – scan 2 Θ or λ

Powder diffraction

Determine the crystal structure

TOF powder diffraction

POWGEN @ SNS

Time-of-flight $\tau = L/v = \lambda mL/h = 2mLd\sin\theta/h$

Time, wavelength, or d-spacing

Fitting diffraction data

Rietveld refinement

- Lattice constants
- space group
- Atom positions
- Site disorder/vacancies
- Thermal vibration amplitude
- Strain broadening

R-factor

Figure 3. Crystal and magnetic structure of the class-I MV (charge-ordered) YBaFe₂O₅ at 20 K. Magnetic unit cell $(a \times 2b \times c)$ is drawn.

Table 4. YBaFe₂O₅ Structure Refinement Results from NPD Data

T (K):	20	280	300	320	340
λ (Å)	1.5402	2.0783	2.0783	2.0783	2.0783
$R_{ m wp}$	0.0671	0.0789	0.0907	0.0783	0.0748
χ^2	4.78	1.38	1.91	1.25	1.17
space group	$Pmma^a$	$Pmma^a$	$Pmma^a$	$Pmmm^b$	$Pmmm^b$
a (Å)	8.0251(1)	8.0162(2)	8.0141(2)	3.93329(7)	3.93181(7)
b (Å)	3.83834(6)	3.85238(7)	3.85511(9)	3.91342(7)	3.91717(7)
c (Å)	7.5312(1)	7.5541(2)	7.5577(2)	7.5652(1)	7.5683(1)
$a_s-b_s(\text{Å})^c$	0.1742	0.1557	0.1520	0.0199	0.0146
$V(Å^3)$	231.983(8)	233.28(1)	233.49(1)	116.447(5)	116.563(5)
Fe(1) z	0.2542(4)	0.2568(9)	0.257(1)	0.2640(2)	0.2641(2)
Fe(2) z	0.2695(4)	0.2662(9)	0.265(1)		
O(1) z	0.003(1)	0.001(3)	0.000(3)	0	0
O(2a) z	0.3213(7)	0.324(2)	0.325(2)	0.3137(5)	0.3140(6)
O(2b) z	0.3132(7)	0.307(2)	0.308(2)		
O(3) x	0.0098(7)	0.012(1)	0.011(2)	0	0
O(3) z	0.3119(3)	0.3130(4)	0.3115(4)	0.3127(5)	0.3125(6)
$Y U_{iso} (\mathring{A}^2)$	0.0063(4)	0.0123(9)	0.013(1)	0.0152(8)	0.0137(7)
Ba U_{iso} (Å ²)	0.0039(6)	0.014(1)	0.017(1)	0.017(1)	0.0144(9)
Fe U_{iso}/U_{eqv} $(A^2)^{d,e}$	0.0039(3)	0.0124(6)	0.0139(8)	0.0132	0.0122
$O(1)U_{\text{egv}} (A^2)^d$	0.0080	0.0138	0.0159	0.0181	0.0136
$O(2) U_{\text{egv}} $ $(\mathring{A}^2)^{af}$	0.0065	0.0123	0.0129	0.0186	0.0188
$O(3) U_{\text{egv}} $ $(\mathring{A}^2)^d$	0.0078	0.0128	0.0141	0.0146	0.0138
Fe M_{ν} ($\mu_{\rm B}$)	3.82(2)	3.41(3)	3.26(3)	2.88(2)	2.76(2)
Fe $M_z(\mu_B)$	0	0	0	-0.17(8)	-0.20(8)
Fe $M_{\text{Total}} (\mu_{\text{B}})$	3.82(2)	3.41(3)	3.26(3)	2.89(2)	2.77(2)

^a Wyckoff positions for space group *Pmma* (nuclear cell) are: Ba at 2a (0,0,0); Y at 2c (0,0,\frac{1}{2}); Fe(1) and O(1) at 2f (\frac{1}{4},\frac{1}{2},\mathcal{Z}); Fe(2) at 2f (\frac{3}{4},\frac{1}{2},\mathcal{Z}); O(2a) at 2e (\frac{3}{4},0,\mathcal{Z}); O(2b) at 2e (\frac{1}{4},0,\mathcal{Z}); O(3) at 4j (x,\frac{1}{2},\mathcal{Z}). ^b Wyckoff positions for space group *Pmmm* (nuclear cell) are: Ba at 1a (0,0,0); Y at 1c (0,0,\frac{1}{2}); Fe at 2t (\frac{1}{2},\frac{1}{2},\mathcal{Z}); O(1) at 1f (\frac{1}{2},\frac{1}{2},0); O(2) at 2s (\frac{1}{2},0,\mathcal{Z}). ^c Orthorhombic distortion; refers to the single-perovskite-type subcell. ^d U_{eqv} values are given for those atoms where anisotropic displacement parameters were used in the refinement. The U_{eqv} values are defined as one-third the trace of the diagonal matrix describing the shape of the thermal ellipsoid. A complete list of the anisotropic displacement parameters is given in the Supporting Information. ^e The displacement parameters for Fe(1) and Fe(2) were constrained to be equal. An isotropic displacement parameter was used in the charge-ordered state, anisotropic displacement parameters were used for the MV state. ^f The displacement parameters for O(2a) and O(2b) were constrained to be equal.

Caution !!!

Things to keep in mind about powder diffraction measurements

Easy to do, but make sure you have a good powder!!!

FIG. 9. CCD image of Fe₃Al powder (a) taken with stationary sample and (b) taken with sample rotation.

- Powder diffraction is excellent for getting the "big picture" but since intensities are spread over a sphere, small (but perhaps important) details are missed.
- Lose information about anisotropy

Physics 590 18

Thermodiffractometry

Detailed parameter dependence

High-flux mode leads to high data rates

Figure 2. DSC peaks for NdBaFe₂O₅ (blue) and HoBaFe₂O₅ (red) upon heating. Areas give latent heat (ΔH) of the charge-ice melting.

Single-crystal: more detail than powders Wide angle diffraction: Get an overview of everything

Single crystal diffraction

Triple-axis diffraction: focus in on specific points of interest

HB-1A 3-axis spectrometer

Orbital ordering in YVO₃

Further references

General neutron scattering

- G. Squires, "Intro to theory of thermal neutron scattering", Dover, 1978.
- S. Lovesey, "Theory of neutron scattering from condensed matter", Oxford, 1984.
- R. Pynn, http://www.mrl.ucsb.edu/~pynn/.

Structural refinements

- GSAS http://www.ncnr.nist.gov/xtal/software/gsas.html
- FullProf http://www.ill.eu/sites/fullprof/

How to get beam time

- Talk to one of us at Ames about your experiment
- We can identify a suitable instrument
- Talk to instrument scientist
- Write a beamtime request

Physics 590 23